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The gauge freedom of the incompressible Euler equations is explored. We present
various forms of the Euler equations written in terms of the impulse density. It is
shown that these various forms are related by a gauge transformation. We devise a
numerical method to solve the impulse form of the Euler equations in a variety of
gauges. The numerical scheme is implemented both in two and three space dimensions.
Numerical results are presented showing that the impulse density tends to concentrate
on sheets.

1. Introduction
Incompressible Euler and Navier–Stokes equations can be written in terms of a

vector field, p, that has the property that the fluid velocity, u, is the divergence-free
projection of p. Several choices are possible for p, which describe the same fluid
motion. The different choices depend on a gauge transformation. According to each
particular gauge, an evolution equation for p describes the motion of the fluid.

In recent years there has been a growing interest in this formulation of incom-
pressible fluid dynamics although the consequences of the gauge invariance and the
properties of the solution of the variable p have not yet been fully analysed. In a par-
ticular gauge, the vector field p has an interesting geometrical meaning: it describes
the evolution of material surfaces; its direction is orthogonal to the material surface
element, and its length is proportional to the area of the surface element. This issue
has been explored by Sagdeev et al. (1982) and Tur & Yanovsky (1993). In this same
gauge, Oseledets (1989) and Kuz’min (1983) have shown that the evolution equation
for the fluid has a Hamiltonian structure. Lagrangian numerical methods based on
this Hamiltonian formulation have been developed for initial value problems by But-
tke (1993, see also Buttke & Chorin 1993). E & Liu (1997) have developed Eulerian
numerical methods to solve this impulse equation. Cortez (1996) and Recchioni &
Russo (1998) have developed Lagrangian methods in the impulse variable to study
the motion of membrane in an inviscid fluid. Chorin (1994) has used this formulation
to study models of turbulence.

Maddocks & Pego (1995) have exploited the gauge freedom to generalize the
impulse equation and present an unconstrained Hamiltonian formulation in terms
of what they call the ‘impetus’. Smereka (1996) has also used the gauge freedom to
develop alternative forms of the impulse equation, one of which is used to develop a
model of uniform turbulence. E & Liu (1998) have used yet another gauge to develop
numerical methods for solving the incompressible Navier–Stokes equation.
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Given the wide interest in this formulation, it would seem useful to have a method
for the numerical solution of the impulse equation. One approach is to implement
a numerical scheme directly based on the impulse equation; such a method would
simultaneously yield the velocity field as well. Unfortunately, straightforward imple-
mentations of such schemes do not work well because the impulse equation is only
weakly well posed (Chen, 1996; E & Liu 1997). E & Liu (1997) went on to provide a
numerical method which alleviated this difficulty in one particular gauge.

In this paper we provide three new methods which also ameliorate the difficulties
associated with the problem being weakly well posed. The main idea behind these
methods is to first solve the incompressible Euler equations using a standard projection
scheme, then a separate equation is solved for the impulse density. In this way the
computation of the impulse does not affect the fluid velocity. Furthermore the equation
we solve for the impulse density appears to be well posed.

We stress that the purpose of this paper is not to present a new method for
solving the incompressible Euler equations but rather to present methods for the
computation of the impulse density. We believe that the impulse variable could be
used as a diagnostic tool. In fact, as we have just mentioned, the impulse equation,
in general, has no particular advantage in providing a solution of the incompressible
Euler equations. On the other hand, E & Liu (1997) have proposed one particular
impulse formulation which appears to be a promising alternative to the standard
projection method.

The plan of the paper is the following: in the next section we describe the impulse
formulation in different gauges, and we point out the physical and geometrical
interpretation of these equations. In § 3 we show the difficulties associated with the
direct numerical solution of the impulse equations, and we present the schemes for
solving the impulse equations which are based on the numerical solution of the Euler
equations. In § 4 we present numerical solutions of the impulse equations in two and
three dimensions in a periodic domain.

2. Impulse formulation of the Euler equations
The Euler equations for an incompressible fluid with unit density are

∇ · u = 0, (2.1)

∂u

∂t
+ u · ∇u = −∇P, (2.2)

where u is the fluid velocity, and P the pressure. Let us consider a vector field that
has the same curl as the velocity:

p = u+ ∇φ. (2.3)

We shall call this vector field the impulse density. An interpretation of p is given by
Smereka (1996).

Note that p is uniquely defined up to a gradient. The evolution equation for p is
derived as follows. Equation (2.2) can be written as

∂u

∂t
− u× (∇× u) = −∇ (P+ 1

2
u · u) . (2.4)

We then substitute (2.3) into (2.4) to obtain

∂p

∂t
− u× (∇× p) = −∇

(
P+ 1

2
u · u− ∂φ

∂t

)
. (2.5)
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Since φ is arbitrary, the above equation can be written as

∂p

∂t
− u× (∇× p) = ∇Λ, (2.6)

where Λ is an arbitrary scalar field which we shall call the gauge. Since u and p differ
only by a gradient, then the velocity field, u, is the divergence-free projection of p. It
is computed using (2.3) where φ satisfies

∆φ = ∇ · p. (2.7)

In a more compact form we may write

u = Pp = (I − ∇∆−1∇·)p. (2.8)

The choice of the gauge will determine the evolution equation for p. If we choose

Λ = 0

we find
∂p

∂t
− u× (∇× p) = 0. (2.9)

We shall call this the zero gauge. If we choose

Λ = −u · p + 1
2
u · u

we obtain the equation

∂p

∂t
+ u · ∇p = −(∇u)T∇φ, (2.10)

where φ is given by equation (2.7), which Maddocks & Pego (1995) derived by
variational considerations. They called p the impetus . This will be called the MP
gauge.

If we choose the gauge

Λ = − 1
2
u · u,

we obtain the equation

∂p

∂t
+ u · ∇u = 0.

This gauge was introduced by E & Liu (1998) to develop numerical schemes for the
incompressible Navier–Stokes equations. We shall call this gauge the EL gauge.

By choosing the gauge

Λ = −u · p
we obtain

∂p

∂t
+ u · ∇p = −(∇u)Tp. (2.11)

We shall call this the geometric gauge. This is probably the most popular impulse
equation, and the one that has been more extensively studied. This is the gauge used
by Buttke (1993), Buttke & Chorin (1993), Cortez (1996) and Recchioni & Russo
(1998) in their numerical computations. Furthermore, Sagdeev et al (1982) and Tur
& Yanovsky (1993) have used this gauge to investigate new topological invariants for
ideal fluids. It is interesting to note that φ satisfies a partial differential equation. It
follows from (2.5) and (2.6) that

∂φ

∂t
= P+ 1

2
u · u+ Λ. (2.12)
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Equation (2.12), in the zero gauge, becomes

∂φ

∂t
= P+ 1

2
u · u. (2.13)

In the MP gauge we find

∂φ

∂t
+ u · ∇φ = P. (2.14)

In the EL gauge it is

∂φ

∂t
= P, (2.15)

and in the geometric gauge one has

∂φ

∂t
+ u · ∇φ = P− 1

2
u · u. (2.16)

Finally, we remark that the choice Λ = −P− 1
2
u · u and φ(x, 0) = 0 gives p = u, in

other words p satisfies the usual Euler equations.

2.1. Properties

The following properties are true for all gauges:

(i) We observe that for a given flow on a fixed domain Ω, the value of p that has
the minimal L2 norm is obtained for p = u. To see this we note that

‖p‖2
2 =

∫
Ω

|u+ ∇φ|2 dx.

Integrating by parts and observing that u · n = 0 for x ∈ ∂Ω we find

‖p‖2
2 =

∫
Ω

(|u|2 + |∇φ|2) dx (2.17)

and the claim follows.

(ii) The Kelvin–Helmholtz circulation theorem states that

d

dt

∮
u · d` = 0.

Since p = u+ ∇φ then it follows that

d

dt

∮
p · d` = 0.

This was pointed out by Buttke (1993).

(iii) The impulse of a region of fluid, Ω, is given by (Batchelor 1967, § 7.2)

I =
1

2

∫
Ω

r × ωdV . (2.18)

Since ω = ∇× p then it follows after an integration by parts that

I =

∫
Ω

pdV +

∫
∂Ω

[(r · p)n− (r · n)p] dS. (2.19)

If the support of p is Ω then (2.18) represents the total impulse of the fluid. Further-
more, as pointed out by Buttke (1993), if ω has compact support (and if the kinetic
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energy of the fluid is finite in two dimensions), then it is possible to find p with
compact support, and therefore (2.19) becomes

I =

∫
Ω

pdV . (2.20)

This equation shows that p can be thought of as the impulse density. Equation (2.20)
can be found in Buttke (1993). The equation continues to be valid even if p does
not have compact support, provided it decays fast enough at infinity. Next, we study
properties of various gauges.

Zero gauge. The impulse equation in this gauge is rather interesting in that there are
no stretching terms. We claim that (2.9) has the structure of a degenerate hyperbolic
system. To see this we note that (2.9) can be written as

∂pα

∂t
+ A

γ
αβ

∂pβ

∂xγ
= 0 where A

γ
αβ = δβαuγ − δαγuβ.

The above system is hyperbolic if for any direction n the matrix Aγnγ = An has three
real eigenvalues with three independent eigenvectors. We find that

An = u · nI − n⊗ u.
In component form

An =

 u2n2 + u3n3 −u2n1 −u3n1

−u1n2 u1n1 + u3n3 −u3n2

−u1n3 −u2n3 u1n1 + u2n2

 .

The eigenvalues are λ = {0, u · n, u · n}. The eigenvector associated with λ = 0 is n.
The eigenspace, R⊥, associated with λ = u · n is the space orthogonal to u. If u · n 6= 0
then R3 is spanned by n and R⊥, but if u · n = 0 then the system does not have three
independent eigenvectors. Consequently the system is a degenerate hyperbolic system.

It is interesting to observe that if the support of p is compact initially, it will remain
compact for later times; however, because of the zero eigenvalue, the support of p is
not carried with the fluid, but its size increases monotonically. It is true that

Ωt ⊆
t⋃

τ=0

Aτ

where Ωt is the support of p at time t and At is the material region at time t, such
that A0 = Ω0. We conjecture that for generic initial conditions the following equality
holds:

Ωt =

t⋃
τ=0

Aτ.

The MP gauge. The impulse equation in this gauge was discovered by Maddocks &
Pego. This form arises when deriving an unconstrained Hamiltonian form of the Euler
equations. They indicate that this gauge might be useful in free boundary problems.
In addition, in the framework developed by Maddocks & Pego they can also derive
the impulse equation in the geometric gauge. We note that in the MP gauge the
support of p is not compact for t > 0, even if the initial support is compact.

The EL gauge. This gauge has been introduced by E & Liu (1998) with the purpose
of obtaining a stable finite difference scheme for the Navier–Stokes equations. They
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found that by using this gauge it is easier to obtain high-order projection methods
for the Navier–Stokes equations on a non-staggered grid.

The geometric gauge. This is probably the most extensively studied impulse equation.
In this gauge the impulse variable has an interesting geometrical interpretation. The
following discussion is closely related to ideas developed in Sagdeev et al (1989),
Buttke (1993), and Tur & Yanovsky (1993). We begin with the geometrical properties
of the vorticity, which may be more familiar to the reader. The vorticity equation for
incompressible flow is

Dω

Dt
= ω · ∇u, (2.21)

where D/Dt ≡ ∂/∂t + u · ∇ is the material derivative. Now let ` be a vector field
associated with an infinitesimal line element of the fluid. The time evolution of ` in
an arbitrary incompressible flow is given by (Batchelor 1967, § 3.1)

D`

Dt
= ` · ∇u.

This equation is identical to the vorticity equation, and therefore, if we initialize `
to be a vortex line, then the vortex lines evolve as fluid line elements, or, to use a
popular expression, vortex lines are frozen into the fluid.

Next we consider a vector field S associated with oriented material surface elements
of an incompressible fluid. Its evolution in an arbitrary divergence-free vector field u
is given by

∂S

∂t
+ u · ∇S = −(∇u)TS . (2.22)

A derivation of this equation can be found in Batchelor (1967, § 3.1). If we compare
this to the equation for the impulse density in the geometric gauge (2.11), we see
that they are the same. Therefore it follows that the oriented surface (defined locally)
associated with the impulse density (see figure 1 from Tur & Yanovsky 1993) must
be frozen into the fluid.

Therefore we see that vortex lines are material lines, and impulse surfaces are
material surfaces. Furthermore, a direct consequence of the equations of motion for
p and ω is

D(p · ω)

Dt
= 0.

Because of the geometric interpretation of p and ω in terms of surface and line
elements, the geometric interpretation of this equation is merely conservation of
volume elements of the fluid, i.e. incompressibility of the flow.

Next we shall give a plausibility argument that the vorticity will concentrate on
tubes whereas the impulse density will concentrate on sheets. Let λ1, λ2, and λ3 be the
eigenvalues of ∇u. Since ∇ · u = 0 then it follows that

λ1 + λ2 + λ3 = 0.

The vorticity will grow fastest when one of eigenvalues is a large positive number
and the other two are negative. This means that the flow is stretching in one
direction and compressing in the other two directions. This explains why vorticity
tends to concentrate in thin tubes. On the other hand the impulse, in the geometric
gauge, will grow fastest when one of the eigenvalues is a large negative number
and the other two are positive, indicating that the flow is being stretched in two
directions and compressed in the other one. Therefore, we expect that the impulse
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will concentrate in thin sheets. This interpretation along with (2.17) and numerical
experiments suggest that the L2 norm of p will increase monotonically in time when
p is initially divergence-free. Chorin (1994) has proposed a similar conjecture for the
L1 norm.

In two space dimensions u and ω are orthogonal to each other; there is no stretching
term and (2.21) becomes

∂ω

∂t
+ u · ∇ω = 0, (2.23)

where ω = (0, 0, ω)T . Consequently, in two dimensions the vorticity is conserved
along fluid paths. As is well known, one sees that the behaviour of the vorticity is
dramatically different in two and three dimensions. However, the stretching term is
present for the impulse equation, therefore we do not expect such dramatic differences
between two and three dimensions.

We also mention that the impulse equation in this gauge has been given a physical
interpretation in terms of magnetization by Buttke & Chorin (1993). Smereka (1996)
also gives a similar physical interpretation using a slightly different gauge.

Exact solutions for the Geometric gauge. We present some exact results to show that
the impulse can grow in time even for some simple steady flows. Consider the following
exact solution of the two-dimensional Euler equations:

ω = f(r) where r =
√
x2 + y2,

then

u = U(r)ûθ where U(r) =
1

r

∫ r

0

f(s)sds,

where ûθ is the unit vector in the θ-direction. An exact solution of the impulse
equation is given by

p = pr r̂ + pθθ̂

with

pr = −U(r)U ′(r)t, and pθ = U(r).

We see that for this steady flow the impulse grows linearly in time.
As a second example we take the 2π-periodic stationary solution of the two-

dimensional Euler equations u = us = (u, v) where

u(x, y) = sin y cos x,

v(x, y) = − sin x cos y.

Consider the impulse equation in the geometric gauge with initial data

p(x, y, 0) = us(x, y) + ∇ψ (2.24)

where

ψ = sin x cos y + sin y cos x.

It is clear that u is the divergence-free projection of p(x, y, 0). Using the exact solution
for u in (2.11) we find

∂p(π/2, π/2, t)

∂t
= p(π/2, π/2, t) and

∂q(π/2, π/2, t)

∂t
= −q(π/2, π/2, t),

where (p, q) are the two components of p.
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Consequently,

p(π/2, π/2, t) = −et and q(π/2, π/2, t) = −e−t. (2.25)

Therefore, at the stagnation point the impulse grows exponentially fast. We expect
this to be true in general.

2.2. Hamiltonian formulations

Maddocks & Pego (1995) showed that the impulse equation is a Hamiltonian system
in Lagrangian variables in the geometric gauge and in the MP gauge. Oseledets (1989)
deduced the Hamiltonian structure in Eulerian form in the geometric gauge.

The Hamiltonian formulation of Euler equations offers several potential advantages,
that could be used both for theoretical and computational purposes. A Lagrangian
description of the fluid can be obtained by a suitable discretization of the Hamiltonian.
The equations of motion of the fluid particles will then be Hamilton’s equations
associated with the discrete Hamiltonian of the fluid. Such a formulation has the
advantage that some integral of the motion will be preserved exactly (by the semi-
discrete scheme). Such schemes (like vortex methods) have no numerical dissipation.
Buttke (1993) exploited some of the properties offered by this formulation, and
proposed a blob method for the numerical solution of the impulse equations in the
geometric gauge.

Another possible advantage of this formulation is that the interaction of the fluid
with other fields can be treated in a natural way, whenever the field can be described
by a potential energy. The system is then described by the Hamiltonian of the fluid
plus the Hamiltonian associated with the field. This approach has been considered by
Recchioni & Russo (1998), who studied the interaction of a fluid with a membrane
in two and three dimensions, both from an analytical and computational point of
view, using the impulse equations in the geometric gauge. A similar problem has been
considered by Cortez (1996), who studied also the effect of viscosity.

3. Numerical approach
Initially one might hope that the impulse formulation provides a better framework

for the numerical solution of the Euler equations. In fact such an approach has been
explored by several authors who used Lagrangian schemes based on the impulse
formulation, see Buttke, Cortez, and Recchioni & Russo. In addition, some boundary
conditions can be implemented in more natural way.

This approach suffers from a serious drawback, however. As we shall see the impulse
variable can grow very fast and become concentrated. This causes the accuracy of
schemes based on the impulse variables to degrade quickly. Nevertheless, it is possible
to construct numerical methods for the impulse equation which mitigate this difficulty.

Finite difference schemes based on the impulse variables have been studied by E &
Liu (1997). They show that the velocity-impulse formulation of the Euler equations
is marginally ill-posed, and this has serious consequences for the stability properties
of finite difference schemes based on this formulation.

We shall compare different schemes for the solution of the impulse equation
with different gauges in two and three dimensions. We consider a domain Ω =
[0, 2π]d with periodic boundary conditions. In the schemes described below we use a
discrete projection operator that is discretely divergence free with respect to centre
differencing.
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3.1. Numerical methods

Method 1. The first scheme, denoted naive2d, uses the p variable as the unknown
field. The semi-discrete equations for p are

∂P

∂t
= F and

∂Q

∂t
= H, (3.1)

where (P ,Q) is the discretization of the two components of p on a square grid with
mesh size 2π/N,

F = −(UDxP + VDyP + PDxU + QDxV ),

and

H = −(UDxQ+ VDyQ+ PDyU + QDyV ).

Here (U,V ) is the discrete velocity field. Dx and Dy are centre-difference operators
on the periodic grid. (U,V ) is obtained from a discrete divergence-free projection of
(P ,Q) using Chorin’s projection method.

For the convenience of the reader we briefly recall Chorin’s method. We first define
a discrete gradient, G, and a discrete divergence, D, as follows:

Gφ = (Dxφ,Dyφ)T , and D · (P ,Q)T = DxP + DyQ

The discrete form of (2.7) is

D · Gφ = D · (P ,Q)T

and the discrete divergence-free projection of (P ,Q)T is

(U,V )T = (P ,Q)T − Gφ ≡ PN(P ,Q)T .

Equations (3.1) are discretized in time by a fourth-order Runge–Kutta scheme. With
this choice of time discretization the centre-difference scheme is stable.

A result of this scheme is shown in figure 1. The initial conditions are given by
(2.24). A 64 × 64 grid has been used, with a time step ∆t = 0.1. This is a steady
solution of the Euler equations, and therefore the vorticity should be constant in
time. We see that the solution is no longer accurate at time t = 1.6. From the figure
it is evident that |p| is concentrating and increasing near the hyperbolic points of the
flow map causing loss of resolution of the numerical solution. This loss of resolution
causes the numerical errors in the projection step. This causes errors in the velocity
field.

E & Liu (1997) have also pointed out difficulties with naive2d. They have shown
that the impulse equation is only weakly well-posed. This can cause numerical
difficulties. They were able to develop numerical methods to alleviate this problem.
Below we also present methods which provide better numerical solutions to the
impulse equation.

Method 2. A better scheme for the solution of the impulse equation is obtained by
solving the Euler equations for u rather than taking the divergence-free projection of
p. The Euler and impulse equations are solved by discretizing the equations

∂u

∂t
= −P(u · ∇u), ∂p

∂t
= −u · ∇p − (∇u)Tp. (3.2)

Equation (3.2) is discretized as

∂

∂t
(U,V )T = −PN

(
(U,V ) · G(U,V )T

)
. (3.3)
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Figure 1. naive2d results. The left-hand column shows contour plots of |ω| at t =0, 1.0, and 1.6
from top to bottom. The spacing between the contours is 0.4. The right-hand column shows the
corresponding contour plots of |p|. The spacing between the contours is 0.5.

Method 3. A slightly better scheme can be obtained by solving (3.2) together with the
equation for φ. This has the advantage of computing a scalar field and appears to be
more accurate. The semi-discrete equation for φ in the geometric gauge is given by

∂Φ

∂t
= − 1

2
(U2 + V 2)−UDxΦ− VDyΦ+P. (3.4)

The pressure is computed by solving the Poisson equation

−∆P = ∇ · (u · ∇u).
We note that this is an intermediate step in the projection method. Equation (3.4),
together with (3.3), is discretized in time by a fourth-order Runge–Kutta scheme. The
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Figure 2. phi2d results for same initial condition as in figure 1. The left-hand column shows contour
plots of |ω| at t = 1, 2, 3, and 4 from top to bottom. The spacing between the contours is 0.4. The
right-hand column shows the corresponding contour plots of |p|. The spacing between the contours
is 1.



200 G. Russo and P. Smereka

Relative error (%)

64× 64 grid 128× 128 grid

Time L1 L2 L∞ L1 L2 L∞

1.0 0.99 0.46 0.56 0.40 0.15 0.16
2.0 6.42 2.61 4.45 4.59 0.48 0.71
3.0 31.1 11.1 20.7 6.86 2.26 4.81
4.0 70.0 31.2 53.5 32.8 8.40 21.8

Table 1. Error in the impulse computed by differencing relative to figure 2.

6

5

4

3

2

1
0 0.5 1.0 1.5 2.0 2.5

Figure 3. Comparison between lag2d (dashed curves) and phi2d (solid curves). The upper pair of
curves are the L∞ norms, the middle pair is the L2 norm, and the lower pair is the L1 norm.

impulse is reconstructed on the grid by

P = U + DxΦ, Q = V + DyΦ.

We shall call this scheme phi2d.
Figure 2 shows the results of the calculations with the same initial conditions used

in figure 1. Here we see that ω is much better behaved and we can now compute
longer in time. In this formulation the loss of resolution of p does not pollute the
calculation of the velocity field.

The error in the computation of the impulse field is summarized in table 1. The
error corresponding to a N × N grid is obtained by comparing the solution to the
one obtained on a 2N × 2N grid. The relative error in the vorticity for a 128 × 128
grid is less than 1% both in the L1 and L2 norms.

Method 4. A better accuracy is obtained by integrating directly the impulse equations
in Lagrangian form. The equations are integrated along the particle trajectories, by
solving the equations

dx̃

dt
= ũ,

dp̃

dt
= −(∇ũ)T p̃. (3.5)

The velocity at each particle location is computed by linear interpolation of the
velocity previously computed on the grid by differencing, and then interpolated on
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Figure 4. Phi2D results. The left-hand column shows contours of ω at times t = 15, 21, and 27
from top to bottom, the contours are separated by 0.1 The middle column shows contours of |p| at
times t = 15, 21, and 27 from top to bottom, in the geometric gauge; the contours are separated by
0.5. The right-hand column shows the contours of |p| in the EL gauge; the contours are separated
by 0.1.

the particle. Such a scheme is not a genuine Lagrangian scheme, but it is rather
an integration along fluid lines. A similar approach is often used in Eulerian fluid
dynamics codes, when one is interested in computing particle trajectories. We shall
call the scheme lag2d.

Equations (3.5) do not contain a gradient in p, and therefore they give a more
accurate description of the evolution of the impulse. The disadvantage of a Lagrangian
approach is that the field is computed on particle locations, and it is difficult to
interpolate the scattered data on a regular grid. An advantage of the Lagrangian
approach is that it provides a very accurate way to compute Lp norms. We use this
feature as a diagnostic tool.

The evolution of the norms is computed and shown in figure 3 compared with
the results from phi2d. At the initial time the test particles are uniformly distributed
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Figure 5. The L∞, L2, and L1 norms are shown for the results in figure 4, corresponding to the
geometric gauge (a) and EL gauge (b). In each plot, the upper curve is the L∞ norm, the middle
one is the L2 norm, and the lower curve is the L1 norm. The norms have been normalized to be
equal to 1 at t = 0.

in [0, 2π]2. A Van der Corput sequence is used to obtain a low-discrepancy uniform
distribution. The norms have been normalized with respect to the initial conditions.

The two numerical solutions are in good agreement up to about time t = 2.
For later times, the numerical solution for φ is not well-resolved and the region of
large gradients of φ is not accurately computed. The main reason for the loss of
accuracy is the presence of a convective term in the equation for φ, which involves
the computation of ∇φ.

4. Numerical results
In the following numerical calculations we shall use phi2d. We shall use a straight-

forward extension of this method for three-dimensional flows.

4.1. Two space dimensions

We use the following initial conditions to examine an unsteady two-dimensional flow:

p =

N∑
i,j=1

p̂ij cos (ix+ jy + θij), (4.1)
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(b)(a)

Figure 6. Beltrami flow: (a) the contours of |ω(x, t)| = 0.55||ω(·, t)||∞ at t = 0; (b) the contours of
|ω(x, t)| = 0.55||ω(·, t)||∞ at t = 2.

where

p̂ij =
1

(i2 + j2)1/2
(cos (αij)ex + sin (αij)ey);

αij and θij are random variables with a uniform distribution in [0, 2π]. We compute
the vorticity and the impulse in two different gauges, namely the geometric gauge and
the EL gauge. The results are shown on figure 4 for N = 3. In this computation we
use a 256×256 mesh with time step of 0.1. In the geometric gauge the general feature
is that the impulse variable concentrates in ‘sheets’. The concentration of impulse is
evident also by looking at the norms. The L∞ norm, in fact, increases much more than
the other norms (figure 5). A completely different behaviour is observed in the EL
gauge. In this case the impulse does not increase dramatically, and no concentration
is observed. The different norms increase at a similar rate.

It is evident from figures 2 and 4 that the impulse (in the geometric gauge) tends
to concentrate in sheets corresponding to regions of large shear. Such behaviour will
appear also in three-dimensional flows.

4.2. Three space dimensions

In this section we present results of phi3d which is three-dimensional version of
phi2d. We consider three cases. The first one is a Beltrami flow, the second represents
two interlocking vortex rings and the third is the interaction of two vortex tubes.
In the last two cases we will see that the p will concentrate on sheets whereas the
vorticity concentrates on tubes. The computational domain is a cube with sides of
length 2π. We have 64 mesh points on a side and we use a time step of 0.05.

4.2.1. Beltrami flows

Beltrami flows are stationary solutions of the incompressible Euler equations in
which ω is parallel to u. The following choice of p yields such a flow:

p(x, 0) = (px, py, pz)

with

px = sin x cos y +
√

2 sin z sin y,
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(b)(a)

(d )(c)

Figure 7. Beltrami flow: the contours of |p(x, t)| = 0.55||p(·, t)||∞ at (a) t = 0, (b) t = 0.5, (c) t = 1
and (d) t = 2.

py = − cos x sin y + cos z sin y,

pz =
√

2 sin x sin y − sin z cos y.

The results are shown in figures 6 and 7. Figure 6 shows that the vorticity is constant
in time as expected whereas figure 7 shows the impulse density concentrating on
sheets. The regions of large concentration of impulse correspond to the region where
the negative eigenvalue of the matrix ∇u is largest (in absolute value).

4.2.2. Interlocking vortex rings

Here we take the following initial condition for the impulse density:

p(x, 0) = (px, py, pz)

with

px = 1
2
exp

[−4(x− π)2
] (

erf (azy) + 1
)
, py = 0,
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(b)(a) (c)

Figure 8. Interlocking vortex rings: the figures on the bottom show the contours of
|ω(x, t)| = 0.55||ω(·, t)||∞, and the figures on the top the contours of |p(x, t)| = 0.55||p(·, t)||∞ at
(a) t = 0, (b) t = 1.8, (c) t = 3.3.

and

pz = 1
2
exp

[−4(z − π)2
] (

erf (axy) + 1
)
,

where

azy = 2

(
1−

√
(y − π+ 1

2
)2 + (z − π)2

)
and

axy = 2

(
1−

√
(y − π− 1

2
)2 + (x− π)2

)
.

This corresponds to a vorticity distribution consistent with two interacting vortex
rings. The numerical results are shown in figure 8 which shows the isosurfaces
|ω(x, t)| = 0.55||ω(·, t)||∞ and |p(x, t)| = 0.55||p(·, t)||∞ at different times.

Note that the apparent breaking of the topology of the vortex ring is only an effect
of the way the numerical results are visualized. It is well known, in fact, that vortex
ring breaking is not possible with the Euler equation.

In the numerical simulations we see that the vorticity becomes concentrated in
tubes and the impulse is concentrating on sheets. Figure 9 shows that for both ω and
p the L∞ norm increases faster than the L1 norm. This is consistent with the notion
that the vorticity and impulse density are becoming more concentrated.

4.2.3. Two vortex tubes

We first define

rxy = (x2 + y2)1/2, ryz = (y2 + z2)1/2

and

C(r) =

{
1− 10r3 + 15r4 − 6r5, 0 < r < 1
0, r > 1.
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Figure 9. The L1 (dotted curve), L2 (dot-dashed), and L∞ (solid) norms are presented for the
interlocking vortex rings: (a) for ω and (b) for p.

Next we consider

pz =

 yC(rxy/2)
−xC(rxy/2)

0

 and px =

 0
zC(ryz/2)
−yC(ryz/2)

 .

One can see by taking the curl of pz that it corresponds to a vortex tube centred on
the z-axis. The vorticity is in the z-direction and it has a cross-section given by C(rxy).
On the other hand px corresponds to vortex tube centred on the x-axis with vorticity
in the z-direction with a cross-section given by C(ryz).

For initial conditions we use

p(x, 0) = pz + 1
2
px. (4.2)

The results of our numerical computations are shown in figures 10(a–d). In figure
10(a) only one vortex tube is shown because the other one is too weak to be seen.
However, as time progresses the vorticity in the other tube starts to grow because
of the stretching effects. At later stages the vortex tube in the z-direction becomes
concentrated in an undulating tube whereas the vortex tube in the x-direction seems
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(b)(a)

(d )(c)

Figure 10. Vortex tubes: the figures on the bottom show the contours of |ω(x, t)| = 0.55||ω(·, t)||∞;
the figures on the top show the contours of |p(x, t)| = 0.55||p(·, t)||∞. (a) t = 0, (b) t = 1.25,
(c) t = 2.75, (d) t = 4.0.
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Figure 11. The L1 (dotted curve), L2 (dot-dashed), and L∞ (solid) norms are presented for the
vortex tubes: (a) for p and (b) for ω.

to concentrate on sheets. On the other hand the impulse quickly concentrates on
sheets. Figure 11 presents the L1, L2, and L∞ norms of both ω and p. They have been
normalized so that they are initially equal to 1. For both ω and p we see that the
L∞ norm is increasing faster than the L1 norm, which is consistent with the notion
that both variables are concentrating. It is interesting to notice that the L∞ norm of
p grows much faster than that of ω.

5. Summary
We have investigated various impulse formulations of the incompressible Euler

equations. In particular we compute numerical solutions in the geometric gauge (this
is the most common impulse equation). We observe that, because of the stretching
term, the impulse variable is not convenient for computation. We developed alternative
methods for the numerical solution of the impulse equations. We observe that the
impulse variable tends to concentrate on sheets in two and three dimensions. It is
interesting that the impulse variable behaves in similar fashion in both two and three
dimensions unlike the vorticity variable. We also note that the impulse variable and
the vorticity variable concentrate in different regions of the fluid. This indicates that
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the regions of high vorticity are not necessarily the most ‘active’ regions of the fluid.
It also suggests that the impulse variable may be an interesting diagnostic tool for
studying fluid flows.
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